Bridging the Gap: Using microstructural properties to predict macroscopic behavior of lime-stabilized clays

Tasneem Ahmadullah, Maria Chrysochoou
Department of Civil & Environmental Engineering, University of Connecticut

Background

Clay swelling damages in pavement = $1 billion costs annually

Treatment

- Clay
- Water
- Lime (CaO)

Clay swelling problems are complex and difficult to address.

Problem

Clay swelling damages in pavement = $1 billion costs annually

Materials Scientist

- Take soil from site
- Create different mixes with lime or cement
- Measure strength at 28 days

Civil Engineer

- Analyze soil properties
- Study reactions over time
- Create kinetic model to predict strength

Approach

- Pure materials:
 - Most common clays along risk continuum
 - Pure bentonite cannot be obtained in large quantities (~20% other minerals present)
 - Lime (CaO) most basic stabilizer

- Compaction and strength
- Pore water extraction and analysis
- Solid Analysis (NMR, TGA, XRD)

Qualitative Analyses

- TGA data shows formation of a distinct hydration product whereas XRD shows only one hydrate formation.
- Both TGA and XRD data shows decrease in the hydrate concentration after 540 days.
- 29Si NMR data shows significant hydrate formation from 270 days whereas in XRD stratlingite concentration increases from 360 days with an exception at 540 days.

Macrostructural Analysis (Strength data)

- Kaolinite Strength continues to evolve beyond 1 year of curing
- Bentonite Strength development is significantly quicker and almost complete within 28 days

Microstructural Analysis (Kaolinite)

- Due to incongruent dissolution of kaolinite, there was preferential release of Si over Al in the beginning, forming amorphous CSH which increased strength for the first year.
- After Al became more available, crystalline stratlingite was formed scavenging Ca from the previous amorphous CSH phase, disturbing the matrix and decreasing strength.

Working Hypothesis for Mechanisms

- Ca consumption & Fate
- XRD & TGA Quantitative Analysis
- Ca mass balance in the system calculated from both TGA and XRD data

Acknowledgements

This project has been supported by National Science Foundation (NSF). Project No-1740554.

The project has contributions from:

Dr. Nicholas Eddy, lab supervisor of Mechanical Testing Lab at the IMS, Uconn, who conducted the NMR experiments.

Peter Glaude, senior machine shop engineer at the Uconn Engineering Technical Service (ETS) machine shop, who built the pore water extraction apparatus.

Assistance of Leana Santos, Corey Walker, Caitlin Jenkins, Samuel Pontes and Kayla Turner in the laboratory analyses.